SURFACE-MOUNTING OF POWER DEVICES TO ALUMINUM HEAT SINKS

SMTA PanPacific Thermal Management Hawaii March 11, 2004

Jim Fraivillig Fraivillig Technologies Boston, MA

PowerSite technology

- Convert aluminum heat sinks to surface-mount applications => solder-on power devices
- Heat-seal copper to aluminum with all-polyimide 'TPI' bond film insulation
- Excellent thermal management
- Improved performance with lower cost
- Patented

Performance advantages of PowerSites:

- Thin, highly thermally-conductive insulation
- All-polyimide durability
- Any heat sink
- No device attachment hardware

TPI bond film

- All-polyimide
- Heat-seals at 250-300°C to aluminum
- 200C operation OK
- 300C exposure OK

TPI bond	film properties	(130TPI-2)
Property	Value	Method
Thickness	1.3 mil (0.033mm)	ASTM D374
Voltage breakdown	>4000 Vac	ASTM D149
Thermal impedance ¹	0.1°C-in²/W	ASTM D5470-95 (Laminate of TPI, copper, solder)
Thermal resistance ¹	$TO-220 = 2.7 \circ C/W TO-247 = 0.7 \circ C/W$	Rj-s (using Anatech pulse test)
Tensile strength (TPI bond)	>600 psi at 25 °C >200 psi at 150 °C	ASTM D412
Shear strength (TPI bond)	>4000 psi at 25 °C >2000 psi at 150 °C	ASTM D412
Operating range	-65 to 200 °C	OEM testing
Flammability	V-0	UL-recognized

Next-Generation Thermal Management

THERMAL INTERFACE	Introduction	
Mica/grease	1940s	
Sil-Pads	1960s	
Ceramic (DBC)	1960s	E o
Insulated metal substrate (IMS)	1980s	
PowerSites	2000	

Device Mounting Comparison

Typical PowerSiteTM design conversion

Conventional Method with Thermal Pads, Screws, Nuts, Clamps

PowerSite Assembly

FT's TPI-based technologies

ALL-POLYIMIDE 'TPI' BOND FILM

- Sold as stand-alone insulation in punched parts
- Kapton MT + thin coating of thermoplastic polyimide adhesive (0.15 mil each side)
- Used as basis of other FT products

'POWERVIA' THERMAL COLUMNS

- Mounting discrete power devices on PCB, providing thermal path to heat sink
- Present market standard: *Plated-thru holes + Sil-Pad*
- Patented

'POWERSITE' SOLDERABLE PADS

- Mounting discrete power devices to heat sinks
- Present market standard: *Sil-Pads with attachment hardware*
- Patented

'POWERFLEX' PRINTED CIRCUITS

- Power circuit pattern bonded to aluminum heat sink
- Present market standard: *IMS ('Thermal Clad')*
 - Patents pending

PowerFlexTM flexible interconnects

DESIGN OPTIONS:

- Layer interconnection (to control board)
- Reduce 'footprint' ('brick' size)
- Increase power density
- Bond to any heat sink

PowerVia technology *Optimal through-hole thermal transfer*

PowerVia technology *Optimal through-hole thermal transfer*

PowerVias for D2Paks

PowerVias inserted into PCB

Conventional thermal via (drilled-and-plate)

Comparison of PowerVia *with* **conventional thermal via**

PowerSite thermal comparisons

Table 3B

Maximum power dissipation to reach a junction temperature of 150°C

Versus insulator pads

"Laminated copper" = PowerSite technology

THERMAL PERFORMANCE: Maximum Power Dissipation to reach Tj = 150 °C				
Interface Material	TO-220 (watt)		TO-247 (watt)	
(Air Flow, Ifm =>)	0	100	0	100
Mica / grease	14.6	18.8	22.7	32.9
BN-filled silicone sheet	13.7	17.6	22.0	31.6
Kapton MT / phase change	14.1	17.9	22.9	33.1
Kapton MT / BN-filled silicone	13.3	16.9	21.8	30.5
Alumina-filled silicone sheet	12.5	15.8	20.4	28.4
Laminated copper	15.9	21.3	24.6	36.4

Table 5

Maximum power dissipation to reach a junction temperature of 150°C

Versus IMS

THERMAL PERFORMANCE: Maximum Power Dissipation to reach $T_j = 150$ °C					
Interface Material	TO-220 (watt)		TO-247 (watt)		
(Air Flow, lfm =>)	0	100	0	100	
Insulated metal substrate	16.6	23.1	25.4	40.1	
Laminated copper	16.8	23.7	24.2	38.0	

SOURCE: Parker Chomerics Technical study, 2000

PowerSite thermal comparisons

Table 3B

Maximum power dissipation to reach a junction temperature of 150°C

Versus insulator pads	THERMAL PERFORMANCE: Maximum Power Dissipation to reach Tj = 150 °C					
	Interface Material		TO-220 (watt)		TO-247 (watt)	
	(A	Po	werSite TM	¹ advan	tage:	100
	Mica / grease					32.9
	BN-filled silicone sh		10-220	2° C/V	V	31.6
	Kapton MT / phase c		TO-247	1º C/V	V	33.1
	Kapton MT / BN-fill	(<u> </u>		30.5
((T · , 1 ·))	Alumina-filled silico	(con	iparea to alumina	iaterial)	28.4	
PowerSite technology	Laminated copper		15.9	21.3	24.6	36.4
	Table 5					

Maximum power dissipation to reach a junction temperature of 150°C

Versus IMS	THERMAL PERFORMANCE: Maximum Power Dissipation to reach Tj = 150 °C				
	Interface Material	PowerSite TM pads are	247 (watt)		
	(Air Flow	aquivalant to IMC	100		
	Insulated metal subst	equivalent to INIS	40.1		
SOURCE: Parker Chomerics	Laminated copper	(alumina-filled IMS material)	38.0		
Technical study, 2000					

PowerFlexTM thermal transfer performance

COMPARISON:

- TPI single-layer
- IMS single-layer
- Tested with Anatech pulse

THERMAL PERFORMANCE: Maximum Power Dissipation ² at Tj = 150 °C

Interface Material	TO-220 (watt)		TO-247 (watt)	
(Air Flow, $lfm =>$)	0	100	0	100
IMS	16.6	23.1	25.4	40.1
PowerFlex	16.8	23.7	24.2	38.0

PowerViaTM thermal transfer testing

Thermal resistance testing of D2Pak (R _{j-s}), using Anatech pulse tester:

- Conventional thermal via (plated-thru-hole + insulation pad + attachment hardware)
- *Cylindrical* column PowerVia
- *Rectangular* column PowerVia

Thermal resistance comparison ⁵

Control board with soldered-on D2Pak, bolted to heat sink

PowerVia (circular footprint) $0.08 \Rightarrow 0.20$ sqin (Face-to-base) $4.4 \circ C/$	W
PowerVia (rectangular footprint)0.20 => 0.30 sqin (Face-to-base)2.7 °C/	W
Thermal via + pad0.30 sqin11.4 °C	/W

NOTE:

- > Thermal resistance is junction-to-sink.
- > Anatech measurement taken at steady-state.
- PCB secured to heat sink on PCB edges only (50-100 psi?).
- Thermal via + pad thermal resistance is about 7°C thru the power device+PCB and 4°C/W thru the insulation pad.

Pressure dependency not a factor with PowerVias

Conventional thermal vias require insulation pads...

...*insulations pads require high-pressure to optimize thermal transfer* to the heat sink.

PowerVias use non-isolating thermal grease or phase-change material...

....*these thermal compounds have little pressure dependency* (and very high thermal transfer).

PowerSiteTM thermal durability

ALL-POLYIMIDE:

- 200°C continuous
- 300°C exposure
- No-lead solder, no problem

<u>NOTE</u>: PowerFlex and PowerVias use same TPI bond film, and have same thermal durability.

PowerSite technical challenges

- Technology inertia
- Heat-seal processing
- Compatible PCB materials, configurations
- Heat sink surface
- Heat sink size and shape
- Volume drives cost

PowerSite applications

- Telcom power supplies
- Portable devices
- Automotive controls
- Multi-chip modules
- Thermally-demanding applications, where cost and reliability are critical

PowerSite worldwide supply

Fraivillig Technologies – developed PowerSites, PowerFlex and PowerVias

www.Fraivillig.com

EIS Fabrico – U.S. technology licensee

www.Fabrico.com

Union Bridge – Asian licensee

www.Union-Bridge.com

