

All-Polyimide Thermal Interface Products

SMTA Harsh Environment Electronics Workshop

Dearborn, MI 6/24/03

Jim Fraivillig Fraivillig Technologies Boston, MA

Why polyimide?

HARSH ENVIRONMENT ELECTRONICS

- Thermal resistance
- Electrical properties
- Chemical resistance
- Low CTE
- 'Filled' polymer retains properties (solvent-cast)
- Non-flammable (UL V-0)

"All-Polyimide" = Both dielectric and adhesive are polyimide chemistry

All-polyimide systems enable....

- Excellent thermal durability:
 - Operation at 200°C+
 - Exposure to 300°C+

• High thermal transfer to heat sink:

- 0.1 °C-sqin/W
- With >4000V dielectric
- Hardware-free:
 - Less interfaces
 - No pressure dependency
 - Design flexibility

Brief history of polyimides

DIELECTRIC FILM:

- Chemistry invented in early '60s (DuPont)
- Kapton 'H' film patented in 1964
- Filmed films introduced in mid '80s (DuPont MT)

ADHESIVE (thermoplastic):

- Developed in late '70s by NASA
- System developed for "atom smashers" in late '80s
- All-polyimide systems developed for flexible laminates in early '90s

FRAIVILLIG TECHNOLOGIES:

- TPI bond film (1995) basis for application-specific products:
- PowerSite patches (1999)
- PowerFlex circuits (2001)
- PowerVia columns (2001)
- CuprImide substrates (*under dev*.)

<u>PI ADHESIVE FEATURES:</u>

- Comparable properties to PI films => adhesive no longer the "weak link"
- Strong bond even when thin (0.1-0.2 mil)
 maximize thermal transfer, while minimizing cost
- Heat-sealable fast, single-unit production

TPI bond film

TPI BONDING:

'Heat-sealing' a solderable surface (*copper foil or PCB*) to an aluminum heat sink

BONDING CONDITIONS:

- 250-320°C
- 200-600+ psi
- 10-30 seconds

PowerViaTM

PowerSiteTM advantage:TO-2202° C/WTO-2471° C/W

(compared to alumina-filled pad material)

Fraivillig Technologies

- Next-gen thermal management
- Heat-sealed -- No attachment hardware
- All-polyimide construction
- Thermal impedance = 0.1° C-sqin/W

Alminur

PowerFlexTM

TPI bond durability

<u>TENSILE STRENGTH</u> •High and consistent to 150°C+ (see chart opposite) •No/little degradation with thermal aging to 150°C+

SHEAR STRENGTH•Room temp = 4000 psi•150°C = 2000 psi

THERMAL TRANSFER *Unchanged with*:

- •Thermal shock
- •Thermal cycling
- •Thermal aging
- •85/85 aging

TPI Bond: *Thermal Durability*

TPI bond film allows heat-sealing of solderable surfaces to aluminum heat sinks for power device attachment

Fraivillig Technologies and EIS Fabrico offer a range of high-performance power electronic packaging options:

- **TPI** <u>bond film</u> *all-polyimide performance*
- **PowerSites**TM soldering discrete <u>power devices</u> to baseplates
- **PowerFlex**TM flexible <u>printed circuits</u> bonded to baseplates
- **PowerVia**TM solid-metal, electrically-isolated <u>thermal vias</u> for PCBs
- **CuprImide**TM coated copper high thermal transfer, low-cost <u>substrate</u>
- Contract assembly

We work with OEMs on optimizing both present and future designs.

PowerSite solderable pads

PowerSites allow the mounting of discrete power semiconductors directly to aluminum baseplates without attachment hardware. The TPI bond film provides over 4000 volts dielectric strength. (Patented)

- Placed and bonded with automation onto a wide variety of baseplates – with pits, walls, fins, any thickness...
- Only used where a device is placed cost-efficient use of material
- Can solder fully-assembled PCBs to baseplates – with "inverted" power devices

PowerSite thermal comparisons

Table 3B

Maximum power dissipation to reach a junction temperature of 150°C

Versus	insulator	pads
--------	-----------	------

THERMAL PERFORMANCE: Maximum Power Dissipation to reach Tj = 150 °C						
Interface Material	TO-220 (watt)		TO-247 (watt)			
(Air Flow, Ifm =>)	0	100	0	100		
Mica / grease	14.6	18.8	22.7	32.9		
BN-filled silicone sheet	13.7	17.6	22.0	31.6		
Kapton MT / phase change	14.1	17.9	22.9	33.1		
Kapton MT / BN-filled silicone	13.3	16.9	21.8	30.5		
Alumina-filled silicone sheet	12.5	15.8	20.4	28.4		
Laminated copper	15.9	21.3	24.6	36.4		

Table 5

Maximum power dissipation to reach a junction temperature of 150°C

Versus IMS

THERMAL PERFORMANCE: Maximum Power Dissipation to reach Tj = 150 °C						
Interface Material	TO-220 (watt)		TO-247 (watt)			
(Air Flow, Ifm =>)	0	100	0	100		
Insulated metal substrate	16.6	23.1	25.4	40.1		
Laminated copper	16.8	23.7	24.2	38.0		

SOURCE: Parker Chomerics Technical study, 2000

"Laminated copper" = PowerSite technology

PowerFlex flexible printed circuits

PowerFlex circuits --based on TPI bond film-- are made with conventional printing-and-etching processes, and are then heat-sealed to aluminum baseplates. The TPI bond film provides over 4000 volts dielectric strength. (Patents pending)

- Placed and bonded with automation onto a wide variety of baseplates – with pits, walls, fins, any thickness...
- Only used where a device-mounting and circuit pattern are needed – costefficient use of material
- Available in single- and multi-layer constructions
- Can extend beyond the plane of the baseplate interconnections to other subassemblies possible
- Lower cost and more design flexibility than IMS (Insulated Metal Substrate) or DBC ceramic

PowerVia thermal columns

PowerVias are solid aluminum columns that are inserted into a conventional rigid PCB. The copper foil bonded to the PowerVia 'top' with TPI bond film allows the soldering of the SMT power device. The fully-assembled PCB is then attached to the heat sink. The TPI bond film provides over 4000 volts dielectric strength. (Patented)

FIGURE 1: PowerVia cross-section.

Note that electronic components (not shown) can be mounted to the bottom -side of the PCB.

Conventional thermal via (drilled-and-plate)

Solid-metal construction
 maximizes thermal transfer

(versus conventional plated-thru hole)

- No special processing required
- Allows double-sided SMT component mounting
- Can mount fully-assembled PCB: to any planar heat sink...with no pressure dependency (non-isolating thermal compound under the PowerVias)
- Available in standard sizes, off-the-shelf

FIGURE 4: PowerVia thermal columns for D²Paks.

TPI+copper and cylindrical aluminum slug precursors also shown. Rectangular PowerVias can also be manufactured from cut-to-length aluminum extrusion.

FIGURE 5: Circuit board with inserted PowerVia columns. Various PowerVia sizes. Shown without electronic components.

CuprImide no-substrate laminates

- "Substrate-less" laminates
 - > No film or fabric
 - > Ceramic powder + adhesive
 - > Very high thermal transfer (0.5°C-sq/W)
 - > Moderate-to-low dielectrics
 - > Low manufactured cost
- Many applications are low voltage (12-42v)
 > Film dielectric = overdesign
- Technology also applies to multilayer addition in conventional PCB mfg
 - > Hard board and flex
 - > Fast thermoplastic bonding
- Patented

Other applications for CuprImide coated copper

Multi-layer circuits

- Low-cost layer addition for both flex and rigid circuits (low-voltage)
- Filled adhesive-on-copper: thermoplastic or thermoset, coated on copper in single-pass
- Low manufactured cost

Grounding patches

- Electrical connection between PCB and aluminum heat sink => replaces hardware
- Very thin *unfilled* polyimide adhesive-on-copper *(embossing recommended)*

Contract Assembly

- EIS Fabrico's facility in Kennesaw, Georgia has installed automation equipment to manufacture PowerSite, PowerFlex, and PowerVia assemblies
- Outsourcing -- prototype and production capabilities are available.
- We are also evaluating overseas partnerships for labor-intensive assembly
- Or... OEMs can buy materials and do own processing.

All-Polyimide *potential concerns*

- General polyimide "Achilles Heels"
 - Hydrolysis in extreme conditions
 - Corona-resistance at high AC voltage
- Processing temperatures of 250-320°C
 - Specialized equipment required
 - Temperature resistance of other materials: copper oxidation, soldermask, etc.
- **Cost vs conventional** insulation and attachment systems (*lower-performance methods*)
 - Acrylic, epoxy, silicone adhesives and pads
 - Thermal grease
 - Hardware to mount to heat sinks

Target Markets *HIGH POWER ELECTRONICS*

- Power supplies
- Control modules
- Motor drives
- CPU modules