

Cool.

Reliable.

Hardware-free.

PowerSite technology is available from **EIS Fabrico** (Kennesaw, GA, 800-351-8273) Direct solder mounting of power semiconductors to heat sinks...

Introducing "SIMS" – Selectively Insulated Metal Substrate

Chomerics' fully automated PowerSite technology provides precise, *selective* positioning of electrically isolated copper interface pads *only* where power devices are to be soldered onto heat sinks. Material cost for the device attachment is minimized, and automation lowers labor expense and ensures consistency. *This new technology offers important performance benefits:*

Hardware-free mounting reduces parts count, saves space

PowerSite technology saves valuable package space, because power semiconductor devices are soldered directly to the copper patches, with no fasteners required. There are no screws, nuts, rivets, clips or brackets to inventory, no fastener holes to compromise thermal or electrical integrity.

Pressure dependency associated with mounting hardware is no longer an issue. Neither is the problem of fasteners becoming loose over time. The high repeatability of automated processing replaces the variability of manual hardware installation.

Improved thermal performance

With thermal impedance as low as 0.1°Cin²/W (0.65°C-cm²/W), PowerSite patches deliver 2 to 5 times that achieved with conventional, manually-applied thermal interface pads. This improved performance offers the designer an opportunity to:

- lower device temperature
- · reduce heat sink size
- · elevate power capacity
- increase ambient temperature rating

Advanced all-polyimide construction provides a strong, durable bond

The PowerSite assembly process is a high temperature lamination of 1-oz. copper foil to the aluminum heat sink substrate. This is accomplished with a proprietary, chemicalresistant insulation utilizing Kapton* MT polyimide film that has been coated with polyimide adhesive on each side. Precise positioning of the insulation film and copper foil, followed by lamination under elevated pressure and heat, is fully automated in one piece of process equipment. The finished patches are ready for immediate device soldering, which can be integrated as the final step.

The PowerSite process produces bonds possessing 600-psi tensile strength and 4000-psi shear strength at room temperature (see Table 2).

Dielectric reliability

Reliable electrical insulation is ensured with the durable Kapton* MT film layer and polyimide adhesive, achieving a voltage breakdown of 5000 Vac (see Table 2).

Finned or contoured heat sinks

PowerSite process equipment can accommodate virtually any heat sink design, including those with elaborate fin structures. This is a major departure from the flat panel requirement of existing insulated metal substrate (IMS[†]) processing.

> Conventional mounting requires mechanical fasteners

PowerSite assemblies are hardware-free

Bonded parts or complete subassemblies

Chomerics will bond PowerSite patches to customer-supplied heat sinks, which are then ready for device soldering. If desired, Chomerics will solder power semiconductors to the patches, providing complete subassemblies.

Chomerics can also serve as lead vendor, managing the supply chain for heat sinks and power devices. In addition, Chomerics will license PowerSite processing equipment to volume manufacturers, and supply the specialized PowerSite materials.

Withstands environmental stress – thermal performance unaffected

Long-term thermal performance of PowerSite patches depends on the reliability and repeatability of the lamination. Environmental stressing designed to test the integrity of the lamination at the aluminum/bond film and copper/bond film interfaces, as well as the solder joint, has been conducted. Thermal resistance of the samples was measured before and after stress using an Analysis Tech Phase VI Thermal Analyzer.

In all cases, the integrity of the lamination was maintained and the solder joint was unaffected. No significant change in thermal resistance was observed after testing under conditions summarized in Table 1. (A copy of the test method and detailed test results are available on request.)

Table 1

ENVIRONMENTAL STRESS TESTING				
Test	Conditions			
High Temperature Aging	1000 hrs at 150°C			
Thermal Shock, liquid-to-liquid	200 cycles, -50 to +150°C			
Thermal Cycling	1000 cycles, -50 to +150°C			
High Heat and Humidity	1000 hrs at 85°C/85% RH			

Table 2

	TYPICAL PROP	PERTIES	
	Property	PowerSite Laminate	Test Method
CONSTRUCTION	Copper Thickness, inch (mm)	0.0014 (0.036)	ASTM D374
	Thermoplastic Polyimide (TPI) Adhesive Thickness, inch (mm)	0.00015 (0.004)	ASTM D374
	Kapton MT Dielectric Thickness, inch (mm)	0.001 (0.025)	ASTM D374
	Thermoplastic Polyimide (TPI) Adhesive Thickness, inch (mm)	0.00015 (0.004)	ASTM D374
	Laminate Thermal Impedance, °C-in²/W (°C-cm²/W)	0.1 (0.65)	ASTM D5470-95
AL	Dielectric Thermal Conductivity, W/m-k	0.38	ASTM D5470-95
THERMAL	Operating Temperature Range, °C	-50 to +200	
	Junction-to-Heat Sink Thermal Resistance, Rj-s,°C/W* T0-247 T0-220	0.67 2.67	JEDEC Std 51 using Analysis Tech Thermal Analyzer
_	Voltage Breakdown, Vac	5000	ASTM D149
ELECTRICAL	Volume Resistivity, ohm-cm	1 x 10 ¹⁴	ASTM D257
TB	Capacitance, pF/in ² (pF/cm ²)	500 (78)	ASTM D150
E	Permittivity, 25°C @ 1kHz	4	ASTM D150
Ξ	Dissipation Factor, 25°C @ 1kHz	0.003	ASTM D150
IICAL	Tensile Strength, psi (mPa) Room Temp 150°C	600 (4.1) 200 (1.4)	ASTM D412
MECHANICAL	Shear Strength, psi (mPa) Room Temp 150°C	4000 (27.6) 2000 (13.8)	ASTM D412
2	UL Recognized	Pending	

*Includes component's internal junction-to-case thermal resistance.

Which applications benefit most from PowerSite technology?

POWER SUPPLIES

MOTOR CONTROLS

AUTOMOTIVE ELECTRONICS

Limited space and weight – Eliminating bulky hardware frees up space and trims package weight.

Production volumes – Any operation mounting 50,000 or more power semiconductors per year will benefit from PowerSite process efficiencies.

High heat loads – As power levels rise, the advantages of PowerSite attachment increase. TO-220 devices with >3 watts and TO-247 devices with >7 watts of dissipation are well suited for PowerSite attachment.

Non-flat heat sink profiles – Finned and contoured heat sinks with non-planar features are no problem for PowerSite assembly equipment. This circumvents the 18x24 inch (46x61 cm) flat panel format of traditional IMS processes, and the secondary process of subdividing panels.

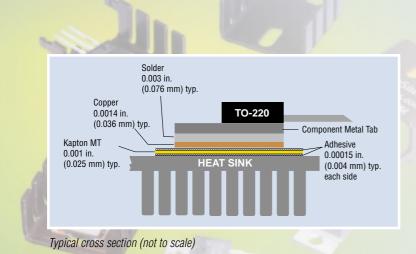
Processing – Assemblies with four or more power devices are excellent candidates for PowerSite attachment.

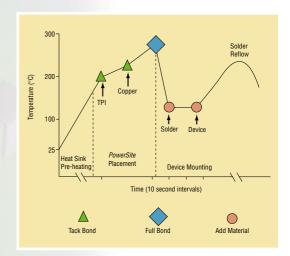
Heat sink thermal performance – The better the heat sink is, the greater the performance advantage gained with PowerSite technology's lower interface resistance.

Heat sink size – PowerSite process equipment handles heat sinks weighing as much as 1000 gm or more, with footprints as large as 8x12 inches (20x30 cm).

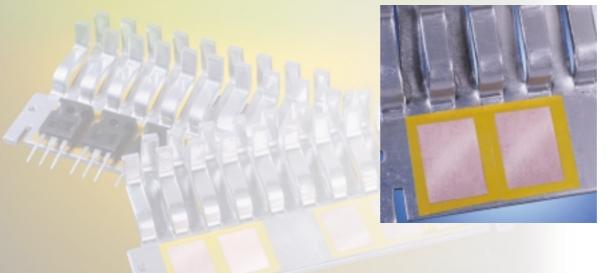
Fewer interfaces – By mounting directly to the heat sink, PowerSite patches eliminate the substrate-to-heat sink interface common in IMS^{\dagger} applications.

www.chomerics.com • Tel (USA) 781-935-4850


Table 3


THERMAL INTERFACE TECHNOLOGIES COMPARISON								
Application		Device Mounting	_	Power Circuitry	Die Mounting			
System	MICA/GREASE	INSULATOR PADS	PowerSite™ (SIMS)	INSULATED METAL SUBSTRATE	DIRECT BOND Copper			
Introduced	pre-1940	1960s	2001	1980s	1960s			
Insulation Construction	Mica wafer with thermal grease on both sides	Filled silicone binder coated on glass fabric or Kapton film	Polyimide adhesive-coated Kapton MT film	Polymer/ceramic blend	Ceramic wafer			
Typical Dielectric Layer Thickness, inch (mm)	0.002 to 0.005 (0.05 to 0.13)	0.005 to 0.020 (0.13 to 0.51)	0.0013 (0.033)	0.006 to 0.012 (0.15 to 0.30)	0.015 to 0.040 (0.38 to 1.00)			
Device Attachment	Hardware compression	Hardware compression	Soldering	Soldering	Soldering			
Typical Thermal Performance	High 0.1°C-in²/W (0.65°C-cm²/W)	Low 0.3 to 0.5°C-in²/W (1.94 to 3.23°C-cm²/W)	High 0.1°C-in²/W (0.65°C-cm²/W)	High 0.1°C-in²/W (0.65°C-cm²/W)	Highest 0.05°C-in²/W (0.32°C-cm²/W)			
Advantages	High thermal performance Low cost	Low cost, clean installation Design versatility Easiest rework	Automated Hardware-free Finned and non-planar heat sinks Copper applied only at device site Consistent thermal transfer Eliminates substrate-to- heat sink interface Polyimide durability and high dielectric strength	Automated Hardware-free Simultaneous device pad and circuit pattern etch Consistent thermal transfer	Very high thermal performance Automated Hardware-free Simultaneous devic pad and circuit pattern etch Can accommodate thick copper layer			
Potential Disadvantages	Messy, time consuming Attachment hardware Inconsistent, uneven coverage Dry out over time Contamination of adjacent circuitry	Attachment hardware Thermal transfer is pressure-dependent Heat sink modifications (holes, etc.) High mounting pressure can cause cut-through failures	Assembled with special process equipment Rework requires solder reflow	Dielectric variability, reliability Rework requires solder reflow Large, flat panels only Brittle - limits design, processing De-panelizing step required Can require heat sinks Copper etch process required	Rework requires solder reflow High cost Brittle - limits desig processing Can require heat sinks Processed in small panels Copper etch proces required			

Our PowerSite technology specialists are ready to assist you in streamlining your manufacturing process



- "SIMS" Selectively Insulated Metal Substrate technology
- cost-effective, automated process ensures consistency
- lower device operating temperatures
- use virtually any heat sink design
- increase operating power without raising component junction temperature
- low thermal variability, no pressure dependency
- compatible with all standard solder-mountable packages TO-220, TO-247, TO-218, etc.

PowerSite process conditions are the same regardless of equipment configuration.

Chomerics' PowerSite process creates a Selectively Insulated Metal Substrate (SIMS), in which electrically isolated copper patches are bonded to a heat sink <u>only</u> where power devices are to be soldered. The patches provide a low thermal impedance interface for direct soldering of power semiconductor packages.